Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
ACS Omega ; 9(13): 15030-15039, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585117

RESUMO

A series of novel titanium complexes (2a-2e) bearing [N, P] aniline-chlorodiphenylphosphine ligands (1a-1e) featuring CH3 and F substituents have been synthesized and characterized. Surprisingly, in the presence of polar additive, the complexes (2a-2e) all displayed high catalytic activities (up to 1.04 × 106 gPolymer (mol·Ti)-1·h-1 and produced copolymer with the ultrahigh molecular weight up to 1.37 × 106 g/mol. The catalytic activities are significantly enhanced by introducing electron-withdrawing group (F) into the aniline aromatic ring. Especially, the increase in activity based on different complexes followed the order of 2e > 2d > 2c > 2b > 2a. Simultaneously, density functional theory (DFT) calculations have been performed to probe the polymerization mechanism as well as the electronic and steric effects of various substituents on the catalyst backbone. DFT computation revealed that the polymerization behaviors could be adjusted by the electronic effect of ligand substituents; however, it has little to do with the steric hindrance of the substituents. Furthermore, theoretical calculation results keep well in accordance with experimental measurement results. The article provided an appealing design method that the employment of fluorine atom as electron-withdrawing to be studied is the promotive effect of transition-metal coordination polymerization.

2.
Open Forum Infect Dis ; 11(4): ofae163, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585185

RESUMO

Background: The aim of this study was to investigate the changes of epidemic characteristics of influenza activity pre- and post-coronavirus disease 2019 (COVID-19) in Beijing, China. Methods: Epidemiologic data were collected from the influenza surveillance system in Beijing. We compared epidemic intensity, epidemic onset and duration, and influenza transmissibility during the 2022-2023 season with pre-COVID-19 seasons from 2014 to 2020. Results: The overall incidence rate of influenza in the 2022-2023 season was significantly higher than that of the pre-COVID-19 period, with the record-high level of epidemic intensity in Beijing. The onset and duration of the influenza epidemic period in 2022-2023 season was notably later and shorter than that of the 2014-2020 seasons. Maximum daily instantaneous reproduction number (Rt) of the 2022-2023 season (Rt = 2.31) was much higher than that of the pre-COVID-19 period (Rt = 1.49). The incidence of influenza A(H1N1) and A(H3N2) were the highest among children aged 0-4 years and 5-14 years, respectively, in the 2022-2023 season. Conclusions: A late, intense, and short-term peak influenza activity was observed in the 2022-2023 season in Beijing. Children <15 years old were impacted the most by the interruption of influenza circulation during the COVID-19 pandemic. Maintaining continuous surveillance and developing targeted public health strategies of influenza is necessary.

3.
Chem Commun (Camb) ; 60(33): 4463-4466, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563776

RESUMO

Magnetostrictive CoFe2O4 (CFO) nanoparticles were encapsulated within a UiO-66 metal-organic-framework layer to form a CFO@UiO-66 nanohybrid. The deforming of CFO, in response to a high-frequency AC magnetic field, initiates the piezocatalytic property of UiO-66 to generate ˙OH radicals, which can kill cancer cells buried in thick tissues, showcasing bright potential for deep-seated tumor treatment.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Ácidos Ftálicos , Humanos , Campos Magnéticos
4.
Food Chem ; 450: 139392, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38640546

RESUMO

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.

5.
Theriogenology ; 223: 1-10, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38642435

RESUMO

Heat stress reduces the number of Sertoli cells, which is closely related to an imbalanced redox status. Glutamate functions to maintain the equilibrium of redox homeostasis. However, the role of glutamate in heat treated Sertoli cells remains unclear. Herein, Sertoli cells from 3-week-old piglets were treated at 44 °C for 30 min (heat stress). Glutamate levels increased significantly following heat stress treatment, followed by a gradual decrease during recovery, while glutathione (GSH) showed a gradual increase. The addition of exogenous glutamate (700 µM) to Sertoli cells before heat stress significantly reduced the heat stress-induced apoptosis rate, mediated by enhanced levels of antioxidant substances (superoxide dismutase (SOD), total antioxidant capacity (TAC), and GSH) and reduced levels of oxidative substances (reactive oxygen species (ROS) and malondialdehyde (MDA)). Glutamate addition to Sertoli cells before heat stress upregulated the levels of glutamate-cysteine ligase, modifier subunit (Gclm), glutathione synthetase (Gss), thioredoxin (Trx1) and B-cell leukemia/lymphoma 2 (Bcl-2), and the ratio of phosphorylated Akt (protein kinase B)/total Akt. However, it decreased the levels of Bcl2-associated X protein (Bax) and cleaved-caspase 3. Addition of the inhibitor of glutaminase (Gls1), Bptes (Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, 30 µM)to Sertoli cells before heat stress reversed these effects. These results inferred that glutamate rescued heat stress-induced apoptosis in Sertoli cells by enhancing activity of antioxidant enzymes and activating the Trx1-Akt pathway. Thus, glutamate supplementation might represent a novel strategy to alleviate the negative effect of heat stress.

6.
Comput Struct Biotechnol J ; 23: 1547-1561, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38645433

RESUMO

Neuroblastoma (NB) is the most prevalent extracranial solid tumor in pediatric patients, and its treatment failure often associated with metastasis. In this study, LASSO, SVM-RFE, and random forest tree algorithms, was used to identify the pivotal gene involved in NB metastasis. NB cell lines (SK-N-AS and SK-N-BE2), in conjunction with NB tissue were used for further study. ABLIM3 was identified as the hub gene and can be an independent prognostic factor for patients with NB. The immunohistochemical analysis revealed that ABLIM3 is negatively correlated with the metastasis of NB. Patients with low expression of ABLIM3 had a poor prognosis. High ABLIM3 expression correlated with APC co-stimulation and Type1 IFN response, and TIDE analysis indicated that patients with low ABLIM3 expression exhibited enhanced responses to immunotherapy. Downregulation of ABLIM3 by shRNA transfection increased the migration and invasion ability of NB cells. Gene Set Enrichment Analysis (GSEA) revealed that genes associated with ABLIM3 were primarily enriched in the cell adhesion molecules (CAMs) pathway. RT-qPCR and western blot analyses demonstrated that downregulation of ABLIM3 led to decreased expression of ITGA3, ITGA8, and KRT19, the key components of CAMs. This study indicated that ABLIM3 can be an independent prognostic factor for NB patients, and CAMs may mediate the effect of ABLIM3 on the metastasis of NB, suggesting that ABLIM3 is a potential therapeutic target for NB metastasis, which provides a novel strategy for future research and treatment strategies for NB patients.

8.
Mol Pharm ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527915

RESUMO

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.

9.
Environ Sci Technol ; 58(13): 6039-6048, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507701

RESUMO

Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.


Assuntos
Compostos Orgânicos Voláteis , Purificação da Água , Destilação , Hidrogéis , Membranas Artificiais , Fenol
10.
Food Chem X ; 22: 101297, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38544930

RESUMO

Natural bioactive compounds and plant constituents are considered to have a positive anti-inflammatory effect. This study aimed to establish a screening technique for anti-inflammatory function in foods based on label-free Raman imaging. A visible anti-inflammatory analysis method based on coherent anti-Stokes Raman scattering (CARS) was established with an LPS-induced RAW264.7 cell model. Dynamic changes in proteins and lipids were determined at laser pump light wavelengths of 2956 cm-1 and 2856 cm-1, respectively. The method was applied to a plant-based formula (JC) with anti-inflammatory activity. Q-TOF-MS and HPLC analyses revealed the main active constituents of JC as quercetin, kaempferol, l-glutamine, and sodium copper chlorophyllin. In in vitro and in vivo verification experiments, JC showed significant anti-inflammatory activity by regulating the TLR4/NF-κB pathway. In conclusion, this study successfully established a label-free and visible method for screening anti-inflammatory constituents in plant-based food products, which will facilitate the evaluation of functional foods.

11.
Water Res ; 253: 121329, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387269

RESUMO

Membrane fouling induced by oily substances significantly constrains membrane distillation performance in treating hypersaline oily wastewater. Overcoming this challenge necessitates a heightened fundamental understanding of the oil fouling phenomenon. Herein, the adsorption and penetration mechanism of oil droplets on hydrophobic membranes in membrane distillation process was investigated at the molecular level. Our results demonstrated that the adsorption and penetration of oil droplets were divided into four stages, including the free stage, contact stage, spreading stage, and equilibrium stage. Due to the extensive non-polar surface distribution of the polytetrafluoroethylene (PTFE) membrane (comprising 95.41 %), the interaction between oil molecules and PTFE was primarily governed by van der Waals interaction. Continuous oil droplet membrane fouling model revealed that the new oil droplet molecules preferred to penetrate into membrane pores where oil droplets already existed. The penetration of resin (a component of medium-quality oil droplets) onto PTFE membrane pores required the "pre-paving" of light crude oil. Finally, the ΔE quantitative structure-activity relationships (QSAR) models were developed to evaluate the penetration mechanism of pollutant molecules on the PTFE membrane. This research provides new insights for improving sustainable membrane distillation technologies in treating saline oily wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Adsorção , Destilação , Membranas Artificiais , Purificação da Água/métodos , Politetrafluoretileno
12.
Adv Sci (Weinh) ; 11(15): e2306229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342602

RESUMO

Splicing factor polyglutamine binding protein-1 (PQBP1) is abundantly expressed in the central nervous system during development, and mutations in the gene cause intellectual disability. However, the roles of PQBP1 in cancer progression remain largely unknown. Here, it is shown that PQBP1 overexpression promotes tumor progression and indicates worse prognosis in ovarian cancer. Integrative analysis of spyCLIP-seq and RNA-seq data reveals that PQBP1 preferentially binds to exon regions and modulates exon skipping. Mechanistically, it is shown that PQBP1 regulates the splicing of genes related to the apoptotic signaling pathway, including BAX. PQBP1 promotes BAX exon 2 skipping to generate a truncated isoform that undergoes degradation by nonsense-mediated mRNA decay, thus making cancer cells resistant to apoptosis. In contrast, PQBP1 depletion or splice-switching antisense oligonucleotides promote exon 2 inclusion and thus increase BAX expression, leading to inhibition of tumor growth. Together, the results demonstrate an oncogenic role of PQBP1 in ovarian cancer and suggest that targeting the aberrant splicing mediated by PQBP1 has therapeutic potential in cancer treatment.


Assuntos
Deficiência Intelectual , Neoplasias Ovarianas , Feminino , Humanos , Proteína X Associada a bcl-2/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Neoplasias Ovarianas/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética
13.
Cell Res ; 34(1): 13-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163844

RESUMO

Oxidative phosphorylation (OXPHOS) consumes oxygen to produce ATP. However, the mechanism that balances OXPHOS activity and intracellular oxygen availability remains elusive. Here, we report that mitochondrial protein lactylation is induced by intracellular hypoxia to constrain OXPHOS. We show that mitochondrial alanyl-tRNA synthetase (AARS2) is a protein lysine lactyltransferase, whose proteasomal degradation is enhanced by proline 377 hydroxylation catalyzed by the oxygen-sensing hydroxylase PHD2. Hypoxia induces AARS2 accumulation to lactylate PDHA1 lysine 336 in the pyruvate dehydrogenase complex and carnitine palmitoyltransferase 2 (CPT2) lysine 457/8, inactivating both enzymes and inhibiting OXPHOS by limiting acetyl-CoA influx from pyruvate and fatty acid oxidation, respectively. PDHA1 and CPT2 lactylation can be reversed by SIRT3 to activate OXPHOS. In mouse muscle cells, lactylation is induced by lactate oxidation-induced intracellular hypoxia during exercise to constrain high-intensity endurance running exhaustion time, which can be increased or decreased by decreasing or increasing lactylation levels, respectively. Our results reveal that mitochondrial protein lactylation integrates intracellular hypoxia and lactate signals to regulate OXPHOS.


Assuntos
Proteínas Mitocondriais , Fosforilação Oxidativa , Camundongos , Animais , Proteínas Mitocondriais/metabolismo , Lisina/metabolismo , Hipóxia , Oxigênio , Lactatos
14.
Adv Mater ; 36(16): e2311474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194906

RESUMO

During liver fibrogenesis, the reciprocal crosstalk among capillarized liver sinusoidal endothelial cells (LSECs), activated hepatic stellate cells (HSCs), and dysfunctional hepatocytes constructs a self-amplifying vicious cycle, greatly exacerbating the disease condition and weakening therapeutic effect. Limited by the malignant cellular interactions, the previous single-cell centric treatment approaches show unsatisfactory efficacy and fail to meet clinical demand. Herein, a vicious cycle-breaking strategy is proposed to target and repair pathological cells separately to terminate the malignant progression of liver fibrosis. Chondroitin sulfate-modified and vismodegib-loaded nanoparticles (CS-NPs/VDG) are designed to efficiently normalize the fenestrae phenotype of LSECs and restore HSCs to quiescent state by inhibiting Hedgehog signaling pathway. In addition, glycyrrhetinic acid-modified and silybin-loaded nanoparticles (GA-NPs/SIB) are prepared to restore hepatocytes function by relieving oxidative stress. The results show successful interruption of vicious cycle as well as distinct fibrosis resolution in two animal models through multiregulation of the pathological cells. This work not only highlights the significance of modulating cellular crosstalk but also provides a promising avenue for developing antifibrotic regimens.


Assuntos
Células Endoteliais , Lipossomos , Nanopartículas , Animais , Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Cirrose Hepática , Fígado/metabolismo
15.
J Hypertens ; 42(5): 816-827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38165021

RESUMO

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease and currently there is no pharmacological therapy. Sympathetic nerve overactivity plays an important role in the development of TAAD. Sympathetic innervation is mainly controlled by nerve growth factor (NGF, a key neural chemoattractant) and semaphoring 3A (Sema3A, a key neural chemorepellent), while the roles of these two factors in aortic sympathetic innervation and especially TAAD are unknown. We hypothesized that genetically manipulating the NGF/Sema3A ratio by the Ngf -driven Sema3a expression approach may reduce aortic sympathetic nerve innervation and mitigate TAAD progression. A mouse strain of Ngf gene-driven Sema3a expression (namely NgfSema3a/Sema3a mouse) was established by inserting the 2A-Sema3A expression frame to the Ngf terminating codon using CRISPR/Cas9 technology. TAAD was induced by ß-aminopropionitrile monofumarate (BAPN) both in NgfSema3a/Sema3a mice and wild type (WT) littermates. Contrary to our expectation, the BAPN-induced TAAD was severer in NgfSema3a/Sema3a mice than in wild-type (WT) mice. In addition, NgfSema3a/Sema3a mice showed higher aortic sympathetic innervation, inflammation and extracellular matrix degradation than the WT mice after BAPN treatment. The aortic vascular smooth muscle cells isolated from NgfSema3a/Sema3a mice and pretreated with BAPN in vivo for two weeks showed stronger capabilities of proliferation and migration than that from the WT mice. We conclude that the strategy of Ngf -driven Sema3a expression cannot suppress but worsens the BAPN-induced TAAD. By investigating the aortic phenotype of NgfSema3a/Sema3a mouse strain, we unexpectedly find a path to exacerbate BAPN-induced TAAD which might be useful in future TAAD studies.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose , Animais , Camundongos , Aminopropionitrilo/efeitos adversos , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/metabolismo , Desoxiglucose/análogos & derivados , Modelos Animais de Doenças , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/efeitos adversos , Semaforina-3A/genética
16.
Med Res Rev ; 44(3): 1221-1266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38204140

RESUMO

Ganoderma meroterpenoids (GMs) containing 688 structures to date were discovered to have multiple remarkable biological activities. 65.6% of meroterpenoids featuring stereogenic centers from Ganoderma species are racemates. Further, GMs from different Ganoderma species seem to have their own characteristics. In this review, a comprehensive summarization of GMs since 2000 is presented, including GM structures, structure corrections, biological activities, physicochemical properties, total synthesis, and proposed biosynthetic pathways. Additionally, we especially discuss the racemic nature, species-related structural distribution, and structure-activity relationship of GMs, which will provide a likely in-house database and shed light on future studies on GMs.


Assuntos
Agaricales , Produtos Biológicos , Ganoderma , Humanos , Terpenos/farmacologia , Terpenos/química , Ganoderma/química , Produtos Biológicos/farmacologia , Estrutura Molecular
17.
Nat Commun ; 15(1): 639, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245508

RESUMO

Plasma convection on a global scale is a fundamental feature of planetary magnetosphere. The Dungey cycle explains that steady-state convection within the closed part of the magnetosphere relies on magnetic reconnection in the nightside magnetospheric tail. Nevertheless, time-dependent models of the Dungey cycle suggest an alternative scenario where magnetospheric convection can be solely driven by dayside magnetic reconnection. In this study, we provide direct evidence supporting the scenario of dayside-driven magnetosphere convection. The driving process is closely connected to the evolution of Region 1 and Region 2 field-aligned currents. Our global simulations demonstrate that intensified magnetospheric convection and field-aligned currents progress from the dayside to the nightside within 10-20 minutes, following a southward turning of the interplanetary magnetic field. Observational data within this short timescale also reveal enhancements in both magnetosphere convection and the ionosphere's two-cell convection. These findings provide insights into the mechanisms driving planetary magnetosphere convection, with implications for the upcoming Solar-Wind-Magnetosphere-Ionosphere Link Explorer (SMILE) mission.

18.
Nano Lett ; 24(2): 724-732, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166126

RESUMO

Photothermal membrane distillation (PMD) has emerged as a promising and sustainable approach for seawater desalination and wastewater purification. However, the wide application of the technique is severely impeded by low freshwater production and membrane fouling/wetting issues. Herein, we developed an advanced hydrogel-engineered membrane with simultaneously enhanced photothermal conversion capacity and desired fouling and wetting resistance for PMD. By the synergies of photothermal Ti3C2Tx MXene nanosheets and the tannic acid-Fe3+ network in the hydrogel, the membrane was endowed with excellent surface self-heating ability, yielding the highest freshwater production rate (1.71 kg m-2 h-1) and photothermal efficiency among the fabricated hydrogel composite membranes under 1 sun irradiation. Meanwhile, the PMD membrane could robustly resist oil-induced fouling and surfactant-induced wetting, significantly extending the membrane lifespan in treating contaminated saline water. Furthermore, when desalinating real seawater, the membrane exhibited superior durability with a stable vapor flux and excellent ion rejection (e.g., 99.24% for boron) for 100 h.

19.
Nanomaterials (Basel) ; 14(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38251165

RESUMO

Perovskite/silicon tandem solar cells have garnered considerable interest due to their potential to surpass the Shockley-Queisser limit of single-junction Si solar cells. The rapidly advanced efficiencies of perovskite/silicon tandem solar cells benefit from the significant improvements in perovskite technology. Beginning with the evolution of wide bandgap perovskite cells towards two-terminal (2T) perovskite/silicon tandem solar cells, this work concentrates on component engineering, additives, and interface modification of wide bandgap perovskite cells. Furthermore, the advancements in 2T perovskite/silicon tandem solar cells are presented, and the influence of the central interconnect layer and the Si cell on the progression of the tandem solar cells is emphasized. Finally, we discuss the challenges and obstacles associated with 2T perovskite/silicon tandem solar cells, conducting a thorough analysis and providing a prospect for their future.

20.
IEEE Trans Med Imaging ; 43(1): 76-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37379176

RESUMO

Existing self-supervised medical image segmentation usually encounters the domain shift problem (i.e., the input distribution of pre-training is different from that of fine-tuning) and/or the multimodality problem (i.e., it is based on single-modal data only and cannot utilize the fruitful multimodal information of medical images). To solve these problems, in this work, we propose multimodal contrastive domain sharing (Multi-ConDoS) generative adversarial networks to achieve effective multimodal contrastive self-supervised medical image segmentation. Compared to the existing self-supervised approaches, Multi-ConDoS has the following three advantages: (i) it utilizes multimodal medical images to learn more comprehensive object features via multimodal contrastive learning; (ii) domain translation is achieved by integrating the cyclic learning strategy of CycleGAN and the cross-domain translation loss of Pix2Pix; (iii) novel domain sharing layers are introduced to learn not only domain-specific but also domain-sharing information from the multimodal medical images. Extensive experiments on two publicly multimodal medical image segmentation datasets show that, with only 5% (resp., 10%) of labeled data, Multi-ConDoS not only greatly outperforms the state-of-the-art self-supervised and semi-supervised medical image segmentation baselines with the same ratio of labeled data, but also achieves similar (sometimes even better) performances as fully supervised segmentation methods with 50% (resp., 100%) of labeled data, which thus proves that our work can achieve superior segmentation performances with very low labeling workload. Furthermore, ablation studies prove that the above three improvements are all effective and essential for Multi-ConDoS to achieve this very superior performance.


Assuntos
Processamento de Imagem Assistida por Computador , Taxa Respiratória , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...